
GAMMA GARP 100
Pulses & Pulse Cycles Overview 7.1
7 GARP

7.1 Overview

The module PulGARP, which contains the class GARP, facilitates the use of GARP pulse cycles
in GAMMA nmr simulations. Class GARP contains parameters which define how GARP cycles
is to be implemented and provides functions for building GARP based waveforms, composite puls-
es, and pulse trains.

7.2 Chapter Contents

7.2.1 GARP Section Listing

Overview page 7-100
Constructors and Assignment page 7-102
Access Functions page 7-104
GARP-1 Functions page 7-106
Propagator Functions page 7-108
Input/Output Functions page 7-109
Auxiliary Functions page 7-111
Description page 7-116
Chapter Source Codes page 7-130

7.2.2 GARP Function Listing

GARP-1 Functions

GARP - Construction page 7-102
= - Assignment page 7-102

Access Functions

channel - GARP rf channel (Inherited PulPar) page 2-15
strength - GARP rf strength (Inherited PulPar) page 2-15
phase - GARP rf phase (Inherited PulPar) page 2-15
offset - GARP rf offset (Inherited PulPar) page 2-15
phase - GARP rf phase page 7-104
offset - GARP rf offset page 7-105

GARP-1 Functions

WF - GARP-1 Waveform page 7-106
WF_GARP1 - GARP-1 Waveform page 7-106
PCmp - GARP-1 Composite Pulse page 7-106
PCmpGARP1 - GARP-1 Composite Pulse page 7-106
CycGARP1 - GARP-1 Pulse Train page 7-107
Scott Smith March 13, 1998

GAMMA GARP 101
Pulses & Pulse Cycles Chapter Contents 7.2
Input/Output Functions

print - Output GARP definitions page 7-109
<< - Output GARP definitions page 7-109

7.2.3 GARP Figures & Tables Listing

Basic GARP 25 Step Sequence- page 7-116
Reading GARP Parameters- page 7-120
13C Decoupled Spectrum Using GARP-1- page 7-122
13C Coupled Spectrum, Zero Strength GARP-1- page 7-122
13C GARP-1 Decoupling Versus RF-Field Strength- page 7-124

7.2.4 GARP Examples

Reading GARP Parameters page 7-120
GARP-1 Decoupling page 7-121
GARP-1 Decoupling vs. Field page 7-123
GARP-1 Decoupling Profile page 7-125

7.2.5 GARP Programs

GarpWF0.cc Generate Plot of GARP-1 25 Step Sequence page 7-130
Scott Smith March 13, 1998

GAMMA GARP 102
Pulses & Pulse Cycles Chapter Contents 7.2

ngth

RP

ts an

. If the
7.3 Constructors and Assignment

7.3.1 GARP

Usage:

#include <PulGARP.h>
GARP()
GARP(double gB1, const String& ch, double ph=0, double off=0);
GARP(const GARP& GRP)

Description:

The function GARP is used to create a GARP parameter container.

1. PulGARP() - Creates an “empty” NULL GARP parameter. Can be later filled by an assignment.

2. PulGARP(double gB1, const& ch, double ph, double off) - Sets up GARP for having an rf-field stre
of gB1 Hz on the channel specified by ch. GARP will be applied with an overall phase of ph degrees and
an offset of off Hz. Called with another PulGARP quantity this function constructs an identical PulGA
to the inputPWF1.

3. PulGARP(const PulGARP &PWF1) - Called with another PulGARP quantity this function construc
identical PulGARP to the inputPWF1.

Return Value:

GARP returns no parameters. It is used strictly to create a GARP parameter container.

Examples:

PulGARP PG;

PulGARP PG1(538.9, “13C”);

PulGARP PG3(PG1);

See Also: =

7.3.2 =

Usage:

#include <PulGARP.h>
void GARP operator = (PulGARP &PWF1)

Description:

The unary operator = (the assignment operator) allows for the setting of one GARP to another GARP
GARP being assigned to exists it will be overwritten by the assigned GARP.

Return Value:

None, the function is void
Scott Smith March 13, 1998

GAMMA GARP 103
Pulses & Pulse Cycles Chapter Contents 7.2
Example:

PulGARP PG1(538.9, “13C”);

PulGARP PG3 = PG1;

See Also: PulGARP
Scott Smith March 13, 1998

GAMMA GARP 104
Pulses & Pulse Cycles Chapter Contents 7.2
7.4 Access Functions

7.4.1 channel

Usage:

#include <PulGARP.h>
String GARP::channel()

Description:

The function channel returns a string indicating the isotope channel GARP is applied on.

Return Value:

The function returns a string.

Example:

#include <PulGARP.h>

GARP GP(600.0, “13C”); // GARP Parameters

cout << “\n\tGARP Decouple On “ // Output channel

<< GP.channel();

See Also:

7.4.2 strength

Usage:

#include <PulGARP.h>
double GARP::strength()

Description:

The function strength returns the value of the rf-field amplitude used in GARP (in Hz).

Return Value:

The function returns a double.

Example:

#include <PulGARP.h>

GARP GP(600.0, “13C”); // GARP Parameters

cout << “\n\tGARP Field Strength Is “ // Output rf strength

<< GP.strength() << “ Hz”; // (will be 600 Hz of course)

See Also:

7.4.3 phase
Scott Smith March 13, 1998

GAMMA GARP 105
Pulses & Pulse Cycles Chapter Contents 7.2
Usage:

#include <PulGARP.h>
double GARP::phase()

Description:

The function phase returns the value of the rf-field phase used for GARP in degrees.

Return Value:

The function returns a double.

Example:

#include <PulGARP.h>

GARP GP; // Declare GARP Parameters

GP.read(“filein.pset”) // Read in GARP Parameters

cout << “\n\tGARP Phase Is “ // Output (overall) rf phase

<< GP.phase() << “ degrees”;

7.4.4 offset

Usage:

#include <PulGARP.h>
double GARP::offset()

Description:

The function offset returns the value of the rf-field offset used for GARP in Hz.

Return Value:

The function returns a double.

Example:

#include <PulGARP.h>

GARP GP; // Declare GARP Parameters

GP.read(“filein.pset”) // Read in GARP Parameters

cout << “\n\tGARP Offset Is “ // Output rf offset

<< GP.offset() << “ Hz”;
Scott Smith March 13, 1998

GAMMA GARP 106
Pulses & Pulse Cycles Chapter Contents 7.2

)

7.5 GARP-1 Functions

7.5.1 WF

7.5.2 WF_GARP1

Usage:

#include <PulGARP.h>
PulWaveform GARP::WF()
PulWaveform GARP::WF_GARP1()

Description:

The GARP member functions WF and WF_GARP1 both return the 25 step GARP-1 waveform.

Return Value:

A 25 step GARP-1 pulse waveform is returned.

Example:

#include <PulGARP.h>

GARP GP; // Declare GARP Parameters

GP.read(“filein.pset”) // Read in GARP Parameters

PulWaveform GWF = GP.WF(); // Make GARP waveform (GARP-1

See Also: PCmp, CycGARP1

7.5.3 PCmp

7.5.4 PCmpGARP1

Usage:

#include <PulGARP.h>
PulComposite GARP::PCmp(const spin_system& sys)
PulComposite GARP::PCmpGARP1(const spin_system& sys)

Description:

The GARP member functions PCmp and PCmpGARP1 both return the 25 step GARP-1 composite pulse for
the input spin system sys.

Return Value:

A 25 step GARP-1 composite pulse is returned.

Example:

spin_system sys; // Declare a spin system

sys.read(“filein.sys”); // Read in the spin system
Scott Smith March 13, 1998

GAMMA GARP 107
Pulses & Pulse Cycles Chapter Contents 7.2

-1)
GARP GP; // Declare GARP Parameters

GP.read(“filein.pset”) // Read in GARP Parameters

PulComposite GCP = GP.PCmp(sys); // GARP composite pulse(GARP

See Also: WF, CycGARP1

7.5.5 CycGARP1

Usage:

#include <PulGARP.h>
PulCycle GARP::CycGARP1(const spin_system& sys)

Description:

The GARP member function CycGARP1 returns a pulse cycle using the 25 step GARP-1 pulse sequence cou-
pled to a WALTZ-4 cycle.

Return Value:

A GARP-1 pulse cycle is returned.

Example:

spin_system sys; // Declare a spin system

sys.read(“filein.sys”); // Read in the spin system

GARP GP; // Declare GARP Parameters

GP.read(“filein.pset”) // Read in GARP Parameters

PulCycle GCy = GP.CycGARP1(sys); // GARP-1 pulse cycle

See Also: WF, PCmp
Scott Smith March 13, 1998

GAMMA GARP 108
Pulses & Pulse Cycles Chapter Contents 7.2
7.6 Propagator Functions

7.6.1 GetU

Usage:

#include <PulGARP.h>
gen_op GetU(i)

Description:

The function GetU will return the propagator which is active during step i of the pulse waveform. The Hamil-
tonian returned is defined in the rotating frame of the pulse waveform and contains contributions from the
pulse waveform rf-field and the isotropic static Hamiltonian.

Return Value:

The function returns an operator.

Example:

#include <PulGARP.h>

double tp = 0.01; // Set pulse length to 10 ms

int N = 1001; // Set number of steps to 1001

See Also:
Scott Smith March 13, 1998

GAMMA GARP 109
Pulses & Pulse Cycles Chapter Contents 7.2
7.7 Input/Output Functions

7.7.1 printBase

Usage:

#include <PulGARP.h>
ostr printBase(ostream& ostr)

Description:

The function printBase will put information regarding the GARP parameters into the output stream ostr given
as an input argument. The function will have less embellishment than the similar function print.

Return Value:

The function modifies the output stream and returns it.

Example:

GARP GP;

GP.read(“filein.pset”);

GP.print(cout);

See Also: print, <<

7.7.2 print

Usage:

#include <PulGARP.h>
ostr print(ostream& ostr)

Description:

The function print will put information regarding the GARP parameters into the output stream ostr given as
an input argument.

Return Value:

The function modifies the output stream and returns it.

Example:

GARP GP;

GP.read(“filein.pset”);

GP.print(cout);

See Also: printBase, <<

7.7.3 <<
Scott Smith March 13, 1998

GAMMA GARP 110
Pulses & Pulse Cycles Chapter Contents 7.2
Usage:

#include <PulGARP.h>
ostream& operator << (ostream& ostr, PulGARP& PG)

Description:

The operator << adds the GARP parameters specified as an argument PG to the output stream ostr.

Return Value:

None.

Example:

Garp GP;

GP.read(“filein.pset”);

cout << GP;

See Also: print, printBase
Scott Smith March 13, 1998

GAMMA GARP 111
Pulses & Pulse Cycles Chapter Contents 7.2
7.8 Auxiliary Functions

7.8.1 channel

Usage:

#include <PulGARP.h>
String PulGARP::channel()

Description:

The function channel returns a string indicating the isotope channel the pulse waveform is applied on.

Return Value:

The function returns a string.

Example:

#include <PulGARP.h>

PulGARP PW = GARP(600.0, “13C”); // GARP-1 Waveform

cout << “\n\tGARP Decouple On “ << PW.channel();// Output channel

See Also:

7.8.2 steps

Usage:

#include <PulGARP.h>
int PulGARP::steps()

Description:

The function steps returns the number of individual steps defined in the pulse waveform.

Return Value:

The function returns an integer.

Example:

#include <PulGARP.h>

See Also:

7.8.3 cycles

Usage:

#include <PulGARP.h>
int PulGARP::cycles()
Scott Smith March 13, 1998

GAMMA GARP 112
Pulses & Pulse Cycles Chapter Contents 7.2
Description:

The function cycles returns the number of individual cycle steps defined in the pulse waveform.

Return Value:

The function returns an integer.

Example:

#include <PulGARP.h>

See Also:

7.8.4 name

Usage:

#include <PulGARP.h>
String PulGARP::name()

Description:

The function name returns the name of the pulse waveform.

Return Value:

The function returns a string.

Example:

7.8.5 values

Usage:

#include <PulGARP.h>
row_vector PulGARP::values()

Description:

The function values returns a row_vector containing values which define the pulse waveform steps. The ith

vector value contains the values {γB1, φ}, where the real component is the rf-field strength in Hz, and the
imaginary component is the rf-phase in degrees (or radians).

Return Value:

The function returns a row vector.

Example:

#include <PulGARP.h>

See Also:

7.8.6 value
Scott Smith March 13, 1998

GAMMA GARP 113
Pulses & Pulse Cycles Chapter Contents 7.2
Usage:

#include <PulGARP.h>
complex PulGARP::value(int i)

Description:

The function value returns a compex number for the values which define the pulse waveform step i. The value

contains the number {γB1, φ}, where the real component is the rf-field strength in Hz, and the imaginary com-

ponent is the rf-phase in degrees (or radians).

Return Value:

The function returns a complex number.

Example:

#include <PulGARP.h>

See Also:

7.8.7 phase

Usage:

#include <PulGARP.h>
double PulGARP::phase(int i)

Description:

The function phase returns the value of the rf-field phase at pulse waveform step i in degrees (or radians).

Return Value:

The function returns a double.

7.8.8 strength

Usage:

#include <PulGARP.h>
double PulGARP::strength(int i)

Description:

The function strength returns the value of the rf-field amplitude at pulse waveform step i in Hz.

Return Value:

The function returns a double.

Example:

#include <PulGARP.h>

See Also:

7.8.9 length
Scott Smith March 13, 1998

GAMMA GARP 114
Pulses & Pulse Cycles Chapter Contents 7.2
Usage:

#include <PulGARP.h>
double PulGARP::length(int i)

Description:

The function length returns the length of th pulse waveform in seconds.

Return Value:

The function returns a double.

Example:

#include <PulGARP.h>

See Also:

7.8.10 steplength

Usage:

#include <PulGARP.h>
double PulGARP::steplength(int i)

Description:

The function steplength returns the length of an individual pulse waveform step in seconds.

Return Value:

The function returns a double.

Example:

#include <PulGARP.h>

7.8.11 cyclelength

Usage:

#include <PulGARP.h>
double PulGARP::cyclelength(int i)

Description:

The function cyclelength returns the length of the pulse waveform cycle in seconds.

Return Value:

The function returns a double.

Example:

#include <PulGARP.h>
Scott Smith March 13, 1998

GAMMA GARP 115
Pulses & Pulse Cycles Chapter Contents 7.2
See Also:

7.8.12 scyclelength

Usage:

#include <PulGARP.h>
double PulGARP::scyclelength(int i)

Description:

The function scyclelength returns the length of th pulse waveform supercycle in seconds.

Return Value:

The function returns a double.

Example:

#include <PulGARP.h>

See Also:

7.8.13 FZ

Usage:

#include <PulGARP.h>
int PulGARP::FZ()

Description:

The function FZ returns the z-axis spin operator associated with the pulse waveform. This operator will be
selective for the isotope which the pulse waveform affects.

Return Value:

The function returns an operator.

Example:

#include <PulGARP.h>

See Also:
Scott Smith March 13, 1998

GAMMA GARP 116
Pulses & Pulse Cycles Chapter Contents 7.2
7.9 Description

7.9.1 Introduction

The functions in module PulGARP and Class GARP (contained in module PulGARP), is designed

to facilitate the use of GARP1 pulse trains in GAMMA NMR simulation programs. In GAMMA,
as in an NMR experiment, we should like to use GARP pulse trains as individual steps in a general
pulse sequence, including use in variable delays as part of multi-dimensional experiments and/or
use in pulse trains during acquisition steps.

7.9.2 GARP Parameters

A variable of type GARP contains only primitive parameters: e consider a pulse waveform as in-
volving four basic features: 1.) A # steps, 2.) An rf-field strength, 3.) An rf-phase 4.) An rf-offset.
These value can be used to completely determine how to set up composite pulses such as that used
in a GARP-1 pulse train.

7.9.3 Basic GARP Waveform

GARP sequences are based on a 25 step composite pulse. The pulses are applied with the same rf-
strength but vary in their applied length and oscillate phase between φ and φ+π. The details are
shown in the following figure.

Basic GARP 25 Step Sequence

Figure 7-1 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with
a 180 degree phase shift, as indicate by a bar in the table listing. The program which produced this
plot can be found at the end of this chapter, GarpWF0.cc on page 130.

1. For information on GARP see the article by Shaka, Barker and Freeman in J. Magn. Reson., 64, 547-552
(85). GARP = Globally optimized Alternating-phase Rectangular Pulses.

Step Angle Step Angle Step Angle

1 30.5 9 134.5 17 258.4

2 55.2 10 256.1 18 64.9

3 257.8 11 66.4 19 70.9

4 268.3 12 45.9 20 77.2

5 69.3 13 25.5 21 98.2

6 62.2 14 72.7 22 133.6

7 85.0 15 119.5 23 255.9

8 91.8 16 138.2 24 65.6

25 53.4
Scott Smith March 13, 1998

GAMMA GARP 117
Pulses & Pulse Cycles Chapter Contents 7.2
7.9.4 GARP-1 Pulse Cycle

The GARP-1 decoupling sequence repeatedly uses the GARP 25 step composite pulse but changes
the overall phase in a WALTZ-4 . Thus for GARP-1 we have

GARP-1 Decoupling Sequence

Figure 7-1 The GARP-1 decoupling sequence. Each 25-step GARP waveform is repeated with the
4-step phase adjustment overlaid: 0, 180, 180, 0. These are designated R, R, R, R respectively.
The 4 waveforms (100 steps) of GARP-1 are repeated as long as the decoupling sequence is ap-
plied.

The GARP 25-step waveforms (composite pulses) are continuously applied with the same rf-
strength but will change phase between φ and φ+π. As is typical in such sequence, the cycle phases
are changed in a 4-step sequence: 0, 180, 180, 0. Thus the first and last 25 steps of the GARP-1
cycle will be identical as will the second and third 25 steps. But these two types are 180 degrees
out of phase.

R R R R
Scott Smith March 13, 1998

GAMMA GARP 118
Pulses & Pulse Cycles GARP Parameters 7.10

s of

delay
er of
g table.

e be-
aren-
 integer
wing

ollows.
ption-

exam-
P
eters

ample
le is
7.10 GARP Parameters

This section describes how an ASCII file may be constructed that is self readable by a GARP vari-
able. The file can be created with an editor of the users choosing and is read with the GARP mem-
ber function “read”. This provides for an extremely flexible and program independent mean
implementing GARP in NMR simulations.

The GARP (ASCII) input file is scanned for the specific parameters which specify the pulse-
parameters1: delay length, rf-length, rf-strength, rf-phase, rf-offset, pulse angle, and the numb
GARP step. These parameters are recognized by certain keywords, as shown in the followin

The order in which these parameters reside in the ASCII file is of no consequence.

The format of each parameter is quite simple and general for all GAMMA parameters. At th
ginning of a line the parameter keyword is written followed by an optional index number in p
thesis. This is then followed by one or more blanks and then an integer in parentheses. The
corresponds to the type of parameter value: 0 = integer, 1 = floating point, or 2 = string. Follo
the parenthesis should be at least one blank then a colon to indicate the parameter value f
The parameter value is then written followed by some blanks then a hyphen followed by an o
al comment.

There is one major restriction; keywords and string parameters cannot contain blanks. For
ple, v (0) is unknown, v(0) is. The string value 19 F is unknown, 19F is fine. If multiple GAR
pulse-delay steps need to be defined in the same file then simply put an index on all param
associated with a desired GARP and read the parameters using that index.

To read the file, see the documentation for function read (or ask-read). There is also an ex
program readsystem.cc provide at the end of this Chapter which should indicate how the fi
read. Each of the possible spin system input parameters is now described in more detail.

1. Note that the ASCII file must contain viable parameters in GAMMA format. Indeed, the file is a GAMMA
parameter set and, as such, may contain any amount of additional information along with the valid GARP
parameters.

Table 2: Spin System Parameters

Parameter
Keyword

Assumed
Units

Examples
Parameter (Type) : Value - Statement

GARPgamB1 Hz GARPgamB1 (1) : 600.0 - Field Strength (Hz)

GARPiso none GARPiso (2) : 19F - GARP rf pulse channel

GARPphi degrees GARPphi (1) : 2.0 - GARP rf phase (deg)

GARPstps none GARPstps (0) : 20 - GARP pulse-delay steps
Scott Smith March 13, 1998

GAMMA GARP 119
Pulses & Pulse Cycles GARP Parameters 7.10
Channel: GARPiso

This parameter is optional. It will define which isotope channel the GARP rf-pulse will be applied on. If no
channel is specified GAMMA will assume that all spins in the system being treated are affected by the rf.
Thus if no channel is specified and GARP is utilized in an NMR simulation the system should be homo-nu-
clear or the same GARP should be desired on all channels (same offset, phase, etc.)

Channel: GARPphi

This parameter is optional. It will define the rf-phase of the GARP pulse. If no phase is specified it will be
taken to be zero.

Pulse Length: GARPtp

The parameters { GARPang, GARPgamB1, GARPtp } work together. GARPtp will set the pulse length if
either GARPang and/or GARPgamB1 have also been specified. If only GARPtp has been specified amongst
the three an error will result when reading these parameters to define GARP.

Pulse Strength: GARPgamB1

The parameters { GARPang, GARPgamB1, GARPtp } work together. GARPgamB1 se the pulse strength if
either GARPang or GARPgamB1 have also been specified. If only GARPgamB1 is specified amongst the
three an error will result when reading these parameters to define GARP. If all three parameters have been
specified then GARPgamB1 will be ignored, the strength set by { GARPang, GARPtp }

Sync Frequency: GARPF

This parameter sets the GARP frequency, i.e. the pulse-delay repetition rate. Thus, users may specify the spe-
cific frequency that GARP will affect the strongest. The parameter will override any delay time set by the
parameter GARPtp. The combined length of the GARP pulse and delay will be set to 1/GARPF.

Delay Length: GARPtp

This parameter sets the GARP delay length, independent of the GARP pulse length. If GARPF exists then
this parameter will not be used.
Scott Smith March 13, 1998

GAMMA GARP 120
Pulses & Pulse Cycles GARP Parameters 7.10

e pro-
. The
ce,
es of

s the
 on the
d the
0459

t to
 user

es the

 more
ged by
ram.
ARP se-
 them.
7.11 GARP Examples

7.11.1 Reading GARP Parameters

To keep GAMMA programs using GARP sequences versatile, users will want to keep all GARP
specifications undetermined in the code. As the program runs, GARP settings are either specified
interactively and/or read in from an external ASCII (parameter) file. This section gives examples
of the latter case. The figure below shows an ASCII parameter file on the left and some GAMMA
program code on the right.

Reading GARP Parameters

Figure 7-2 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with
a 180 degree phase shift, as indicate by a bar in the table listing. The program which produced this
plot can be found at the end of this chapter, GarpWF0.cc on page 130.

The ASCII parameter file (on the left) is taken to be called “GARP.pset” and is read in by th
gram code. Thus one can change the GARP parameters independent of the GAMMA code
ASCII file format is typical of GAMMA parameter sets: The line ordering is of no consequen
the column spacing is not important, the end “- comments” can be left off, and additional lin
text or parameters may be included.

The GAMMA code is color coded with the parameters they read in the previous figure. Thu
second line (blue) will read the blue parameters and set up GARP with a strength of 983 Hz
proton channel with an overall phase of 90 degrees. Similarly, the next line (green) will rea
parameters colored green from the same ASCII file but sets up GARP with a strength of 2.
kHz on the 19F channel (no phase, no offset).

The next line will interactively ask the user to supply a filename where the program can ge
GARP parameters. This filename (in this case “GARP.pset”) will be prompted for unless the
specifies the file on the command line when the program is executed. The following line do
same but reads the GARP parameters indexed with a “3” from the file.

Using a combination of these commands, the user has complete flexibility in defining one or
GARP sequences in the same GAMMA program. The GARP parameters can be easily chan
either changing their values in the ASCII file and/or changing the filename given to the prog
See the section of GARP parameters to see which parameters can be used in setting up G
quences. See the other programs in this chapter for full examples GAMMA programs using

GARPphi (1) : 90.0 - GARP overall rf-phase (deg)
GARPiso (2) : 1H - GARP pulse channel
GARPgamB1 (1) : 983.0 - GARP pulse strength (Hz)
GARPiso(3) (2) : 19F - GARP pulse channel
GARPgamB1(3)(2) : 2045.9 - GARP pulse strength (Hz)

GARP GP; // Declare GARP parameters
GP.read(“GARP.pset”); // Read GARP from file
GP.read(“GARP.pset”, 3); // Read GARP from file
GP.ask_read(argc, argv, 1); // Read GARP from file
GP.ask_read(argc, argv, 2, 3); // Read GARP from file
Scott Smith March 13, 1998

GAMMA GARP 121
GARP Parameters 7.10

March 13, 1998

 // ask for detection channel

// Spectral width
// Get desired spectral width

// Block size (must be base 2)
// Get block size

// Half-height linewidth
// Ask for apodization strength

// Set dwell time
// Set apodization rate
// Total FID length
// Set isotropic Hamiltonian
// Set detection operator to F-

 // Set density mx equilibrium
, 90.); // This is 1st 90 pulse

sigmap); // Perform acquisition under GARP-1
,R,0); // Here is an exponential

// Apodized FID
// Transformed FID -> spectrum

); // Output ASCII file
// Plot to screen using Gnuplot

imply sets the parameters up inter-
 system and the GARP parameters

le who’s name the user must specify.

am does the simulation. The FID is ac-
function “FID” and the pulse cycle has
st few lines apodize and transform the
 the screen.

ange effects and/or changing the 1st
e only minor modifications of a few

 file is listed on the following page. It
h the spin system and the GARP set-
Scott Smith

7.11.2 GARP-1 Decoupling

In this section we shall produce a simple 1D NMR spectrum under
GARP-1 decoupling. A hard 90 pulse will be applied to a chosen
spin system on the acquisition channel. Then GARP-1 will be ap-
plied on the decoupler channel during acquisition. The resulting
FID will be apodized and Fourier transformed, the NMR spectrum
put on screen using Gnuplot. Note that relaxation and exchange ef-
fects will be ignored in this simulation. The code for simple
GARP-1 decoupling is shown below:

/* GARPdec0.cc ***
** **
** GAMMA Decoupling Example Program **
** **
** This program uses the class GARP to perform a simple decoupling **
** simulation. A hard ideal pulse will be applied to an input spin **
** system. Subsequently, an acquisition will be performed with GARP-1 **
** decoupling applied on a specified channel. **
** **
** Author: S.A. Smith **
** Date: 3/9/98 **
** Update: 3/9/98 **
** Version: 3.5.4 **
** Copyright: S. Smith. Modify this program as you see fit for personal **
** use, but you must leave the program intact if redistrubuted **
** **
**
**/

#include <gamma.h>
#
main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tGARP Decoupling\n\n”;
 int qn = 1; // Query index
 spin_system sys; // Declare a spin system
 GARP GP; // GARP parameters

String filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 GP.read(filename); // Read in GARP parameters
 PulCycle PCyc = GP.CycGARP1(sys); // Construct GARP-1 cycle

String IsoD = sys.symbol(0); // Detection/pulse channel
 if(sys.heteronuclear()) // If heteronuclear system

 query_parameter(argc, argv, qn++,
 “\n\tDetection Isotope? “, IsoD);
 double SW;
 query_parameter(argc, argv, qn++,
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024;
 query_parameter(argc, argv, qn++,
 “\n\tBlock Size? “, npts);
 double lwhh = 1.0;
 query_parameter(argc, argv, qn++,
 “\n\tApodization (Hz)? “, lwhh);
 double td = 1/SW;
 double R = (lwhh/2)*HZ2RAD;
 double tt = (npts-1)*td;
 gen_op H = Ho(sys);
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 row_vector data = PCyc.FID(npts,td,Det,
 row_vector exp = Exponential(npts,tt,0.0
 row_vector fidap = product(data,exp);
 data = FFT(fidap);
 GP_1D(“spec.asc”, data, 0, -SW/2, SW/2
 GP_1Dplot(“spec.gnu”, “spec.asc”);
 }

The first half of this program s
actively. Note that both the spin
are contained in the same fi

The second half of the progr
quired using the pulse cycle
been set to GARP-1. The la
FID then spit the plot out on

Addition of relaxation & exch
pulse to non-ideal will requir
lines.

The input parameter (ASCII)
contains parameters for bot
tings.

GAMMA GARP 122
GARP Parameters 7.10

March 13, 1998

ctrum Using GARP-1

d using the program GARPdec0.cc
.sys. The decoupler was applied to the
trength. Detection was on the proton
cted using a spectral width of 500 Hz.

.5 Hz line-broadening.

e or specifying a different input file,
ly altered. For example, by setting the
o one obtains the following spectrum.

, Zero Strength GARP-1

re but with no decoupler field strength.

0 100 200

0 100 200
Scott Smith

Example of a GARP decoupling input file (GARPdec.sys)

SysName (2) : GARP - Name of the Spin System
NSpins (0) : 4 - Number of Spins in the System
Iso(0) (2) : 1H - Spin Isotope Type
Iso(1) (2) : 1H - Spin Isotope Type
Iso(2) (2) : 1H - Spin Isotope Type
Iso(3) (2) : 13C - Spin Isotope Type
v(0) (1) : 105.0 - Chemical Shifts in Hz
v(1) (1) : -174.32 - Chemical Shifts in Hz
v(2) (1) : 15.0 - Chemical Shifts in Hz
v(3) (1) : 0.0 - Chemical Shifts in Hz
J(0,1) (1) : 10.0 - Coupling Constants in Hz
J(0,2) (1) : 7.9 - Coupling Constants in Hz
J(0,3) (1) : 22.0 - Coupling Constants in Hz
J(1,2) (1) : 2.8 - Coupling Constants in Hz
J(1,3) (1) : 32.0 - Coupling Constants in Hz
J(2,3) (1) : 18.3 - Coupling Constants in Hz
Omega (1) : 400 - Spect. Freq. in MHz (1H based)

GARPphi (1) : 0 - GARP pulse phase (deg)
GARPiso (2) : 13C - GARP pulse channel
GARPgamB1 (1) : 1500.0 - GARP pulse strength (Hz)

When the program (GARPdec0.cc) is compiled its execution will
produce a plot on screen if the Gnuplot program is available. As-
suming the executable is called a.out, the following command will
produces a spectrum:

a.out GARPdec.sys 1H 500 1024 .5

The command “a.out” alone will prompt you for input values. Had
you input the above command (or parameters) the spectrum should
appear as shown in the following figure.

13C Decoupled Spe

Figure 7-3 The spectrum produce
with input parameter file GARPdec
13C channel with a 1.5 kHz field s
channel. 1K data points were colle
The data was processed with a 0

By either editing the input fil
the spectrum can be radical
GARP pulse strength to zer

13C Coupled Spectrum

Figure 7-4 Same as previous figu

-200 -100

-200 -100

GAMMA GARP 123
GARP Parameters 7.10

March 13, 1998

// Detection/pulse channel
// If heteronuclear system

 // ask for detection channel

// Spectral width
// Get desired spectral width

// Block size (must be base 2)
// Get block size

// Half-height linewidth
// Ask for apodization strength

// Set dwell time
// Set apodization rate
// Total FID length
// Set isotropic Hamiltonian
// Set detection operator to F-

 // Set density mx equilibrium
, 90.); // This is 1st 90 pulse

// Set GARP field strength
// Set GARP-1 pulse cycle
// Perform acquisition
// Here is an exponential
// Apodized FID
// Transformed FID -> spectrum

vious program are obvious. An ex-
cify a list of decoupler field
o the program. These fields are
mputed at each decoupler strength.
x which is given to the Gnuplot rou-
n screen. In addition, the stack plot
Scott Smith

7.11.3 GARP-1 Decoupling vs. Field

We can readily modify the previous program to loop over differing
rf-field strengths and determine how well GARP-1 does as decou-
pling. In this case we will just read in a series of gB1 values from
an external ASCII file and loop over them producing a 1D spec-
trum at each value. We’ll spit out all the spectra in a single stack
plot.

/* GARPdec1.cc ***
** **
** GAMMA Decoupling Test Program **
** **
** This program uses the class GARP to perform a simple decoupling **
** simulation. A hard ideal pulse will be applied to an input spin **
** system. Subsequently, an acquisition will be performed with GARP-1 **
** decoupling applied on a specified channel. **
** **
** Author: S.A. Smith **
** Date: 3/11/98 **
** Update: 3/11/98 **
** Version: 3.5.4 **
** Copyright: S. Smith. You can modify this program as you see fit **
** for personal use, but you must leave the program intact **
** if you re-distribute it. **
** **
***/

#include <gamma.h>

main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tGARP Decoupling Vs. Decoupler Strength\n\n”;
 int qn = 1; // Query index
 spin_system sys; // Declare a spin system
 GARP GP; // GARP parameters
 String filename; // Input filename
 filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 GP.read(filename); // Read in GARP parameters
 cout << GP;
 PulCycle PCyc;

 query_parameter(argc, argv, qn++, // Ask for field strength file
 “\n\tFile of Field Strengths? “, filename);
 int N; // Number of field strengths
 double* gB1s = GetDoubles(filename, N); // Get array of field strengths

 String IsoD = sys.symbol(0);
 if(sys.heteronuclear())
 query_parameter(argc, argv, qn++,
 “\n\tDetection Isotope? “, IsoD);
 double SW;
 query_parameter(argc, argv, qn++,
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024;
 query_parameter(argc, argv, qn++,
 “\n\tBlock Size? “, npts);
 double lwhh = 3.0;
 query_parameter(argc, argv, qn++,
 “\n\tApodization (Hz)? “, lwhh);
 double td = 1/SW;
 double R = (lwhh/2)*HZ2RAD;
 double tt = (npts-1)*td;
 gen_op H = Ho(sys);
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 row_vector data, exp, fidap;
 matrix datamx(N,npts);
 for(int i=0; i<N; i++)
 {
 GP.strength(gB1s[i]);
 PCyc = GP.CycGARP1(sys);
 data = PCyc.FID(npts,td,Det,sigmap);
 exp = Exponential(npts,tt,0.0,R,0);
 fidap = product(data,exp);
 data = FFT(fidap);
 datamx.put_block(i,0,data);
 }
 double Nm1 = double(N-1);
 String AF(“stk.asc”);
 String GF(“stk.gnu”);
 GP_stack(AF, datamx, 0,1,N,0.0,Nm1);
 GP_stackplot(GF, AF);
 FM_stack(“stk.mif”, datamx, 1.5, 1.5, 1);
 }

The modifications from the pre
ternal ASCII file is used to spe
strengths and these are read int
looped over, a new spectrum co
The spectra are put into a matri
tines for display as a stack plot o

GAMMA GARP 124
Pulses & Pulse Cycles GARP Parameters 7.10
is output in FrameMaker MIF format for incorporation into documents in an editable form. The
latter is shown in the following figure.

13C GARP-1 Decoupling Versus RF-Field Strength

Figure 7-5 Proton spectra produced using the program GARPdec1.cc with input parameter file GARP-
dec.sys and decoupler strength file GARPdecBs. The decoupler was applied to the 13C channel with field
strengths shown. Detection was on the proton channel. 1K data points were collected using a spectral width
of 500 Hz. The data was processed with a 1.0 Hz line-broadening.

When the program (GARPdec1.cc) is compiled its execution will produce a stack plot on screen if
the Gnuplot program is available. Assuming the executable is called a.out, the following command
will produce the plot shown in the previous figure:

a.out GARPdec.sys GARPdecBs 1H 500 1024 1.0

The ASCII file GARPdecBs contains a list of rf-field strengths (in Hz) that the program used. The
file has a single field strength per line and is shown next.

GARP decoupling rf-field input file (GARPdecBs)

0
200
400
600
800

Unlike GAMMA parameter set files (such as GARPdec.sys) this file is simple ASCII and cannot
have anything other than a single floating point or integer value per line. No additional comments
may be included.
Scott Smith March 13, 1998

GAMMA GARP 125
Pulses & Pulse Cycles GARP Parameters 7.10

in
re the

wn on
ly after
s). In

 quick
e
 a slight
7.11.4 GARP-1 Decoupling Profile

In this section we shall attempt to produce a GARP-1 decoupling profile. A hard 90 pulse will be
applied to a simple heteronuclear spin system on the acquisition channel. Then GARP-1 will be
applied on the decoupler channel during acquisition. The resulting FID will be apodized and Fou-
rier transformed. This pulse-delay process will be repeated for differing offsets on the decoupler
channel. Each spectrum will be plotted with its center at the offset frequency to produce the profile.

The really no significant differences between this and our previous calculations. To determine a
profile one uses the simplest spin system (here a two spin heteronuclear system). The 1D spectrum
is recalculated after either moving the decoupler rf offset or, equivalently, moving all decoupler
isotope channel chemical shifts. The spectra are all just put into a single vector, offset so their re-
spective centers are set to be referenced to the decoupler offset value.

For fun, we’ll design the GAMMA program to allow for the reproduction of Fig 1c. (bottom)
the original GARP-1 publication by Shaka, Barker, and Freeman (page 550). In fact, here a
GAMMA simulation results.

GARP-1 Decoupling Profile

Figure 7-6 GARP-1 decoupling profile. Decoupling was performed on the carbon channel in a 13C-
1H two spin system. The decoupling rf-field strength was set to 2 kHz and the scalar coupling to 221
Hz. A linebroadening of 1.5 Hz was used in processing the spectra. The block size was 1K and the
offset increment set to 200 Hz. These parameters were use to mimic the Shaka et. al paper. The
text at the right is the file which was fed into the simulation program.

The agreement is excellent. The code for a “synchronous” GARP-1 decoupling profile is sho
the next page. This program sets a spectral width such that acquisition points are taken on
an even number of GARP-1 cycles (or at least an even number of GARP 25-step waveform
examining the program note that there are very few lines that have much to do with GARP. A
replacement of a couple of lines would make this use MLEV or WALTZ or Additionally w
could adjust it let the user select among decoupling sequences. Even better, we can perform
adjustment and include the effects of relaxation and/or exchange.

-4000 -2000 0 2000 4000

SysName (2) : GARP - Name of the Spin System
NSpins (0) : 2 - Number of Spins
Iso(0) (2) : 1H - Spin Isotope Type
Iso(1) (2) : 13C - Spin Isotope Type
v(0) (1) : 0.0 - Chemical Shifts in Hz
v(1) (1) : 0.0 - Chemical Shifts in Hz
J(0,1) (1) : 221.0 - Coupling Constants in Hz
Omega (1) : 720 - Spec. Freq. in MHz

GARPphi (1) : 0 - GARP pulse phase (deg)
GARPiso (2) : 13C - GARP pulse channel
GARPgamB1 (1) : 2000.0 - GARP pulse strength (Hz)
Scott Smith March 13, 1998

GAMMA GARP 126
GARP Parameters 7.10

March 13, 1998

// Half-height linewidth
// Ask for apodization strength

// # Of Offsets (on each side)
 // Get # offsets
ts? “, NO);

 // Get # offsets
ffset);

t Through All Offsets

// Set apodization rate
// Set detection operator to F-

 // Set density mx equilibrium
, 90.); // This is 90 detection pulse

// Block for acquisiton

ver Full Profile

x0); // Block for profile
// Total offset at end
// Block for apodized FID
// Empty GARP-1 pulse cycle
// Synchronize dwell times
// Set dwell time
// Total FID length

,R,0); // Block for apodization

ulate Profile

// Point index in profile
// Set 1st profile offset
// Loop over offsets

 // GARP-1 cycle this offset
// Acquisition this offset
// Apodized FID this offset
// Spectrum this offset
// Put spectrum in profile
// Move system to next offset
// Adjust profile point index

// Final plot frequency
// Output profile ASCII data
// Plot to screen using Gnuplot
// Plot in FrameMaker MIF
Scott Smith

/* GARPprof1.cc ***
** **
** GAMMA Decoupling Test Program **
** **
** This program uses the class GARP to perform a simple decoupling **
** simulation. A hard ideal pulse will be applied to a simple two spin hetero- **
** nuclear system. Subsequently, an acquisition will be performed with **
** GARP-1 decoupling applied on one the channel which is not being **
** idetected. This process will be repeated over a range of decoupler offsets. **
** The result is a GARP-1 decoupler profile and will be plotted on screen if **
** Gnuplot is available on the system. The profile is also output inMIF. **
** **
** Author: S.A. Smith **
** Date: 3/9/98 **
** Update: 3/9/98 **
** Version: 3.5.4 **
** Copyright: S. Smith. You can modify this program as you see fit for your **
** use, but you must leave the program intact if distrubuted. **
** **
***/

#include <gamma.h>

main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tGARP Decoupling Profile\n\n”;

// Read In Spin System & GARP Parameters

int qn = 1; // Query index
 spin_system sys; // Declare a spin system
 GARP GP; // GARP parameters
 String filename; // Input filename
 filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 if(sys.spins()!=2 || sys.homonuclear())
 cout << “\n\tWarning! This program has been”
 << “ set up for a two spin heteronuclear”
 << “ system.\n Results on other systems”
 << “ can be unpredictable........”;
 GP.read(filename); // Read in GARP parameters

// Set Acquistion and Profile Parameters

String IsoD = sys.symbol(0); // Detection/pulse channel
 String IsoG = GP.channel(); // Decoupler channel
 if(IsoD == IsoG) // Try and set channel to
 IsoD = sys.symbol(1); // not be the decoupling one
 double SW; // Spectral width
 query_parameter(argc, argv, qn++, // Get desired spectral width
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024; // Block size (must be base 2)
 query_parameter(argc, argv, qn++, // Get block size

 “\n\tBlock Size? “, npts);
 double lwhh = 3.0;
 query_parameter(argc, argv, qn++,
 “\n\tApodization (Hz)? “, lwhh);
 int NO = 30;
 query_parameter(argc, argv, qn++,
 “\n\tNumber of Positive Decoupler Offse
 double offset;
 query_parameter(argc, argv, qn++,
 “\n\tDecoupler Offset Per Step (Hz)? “, o

// Set Up Variables Consisten

double R = (lwhh/2)*HZ2RAD;
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 row_vector data(npts);

// Set Up Variables Global O

row_vector profile((2*NO+1)*npts, comple
 double totaloff = double(NO)*offset;
 row_vector fidap;
 PulCycle PCyc = GP.CycGARP1(sys);
 SW = PCyc.FIDsync(SW);
 double td = 1/SW;
 double tt = (npts-1)*td;
 row_vector exp=XExponential(npts,tt,0.0
 PCyc.print(cout, 1);

// Loop Over Offsets, Calc

int K =0;
 sys.offsetShifts(-NO*offset, IsoG);
 for(int ov=-NO; ov<=NO; ov++)
 {
 PCyc = GP.CycGARP1(sys);
 data = PCyc.FID(npts,td,Det,sigmap);
 fidap = product(data,exp);
 data = FFT(fidap);
 profile.put_block(0, K, data);
 sys.offsetShifts(offset, IsoG);
 K += npts;
 }

 double F = totaloff + SW/2;
 GP_1D(“prof.asc”, profile, 0, -F, F);
 GP_1Dplot(“prof.gnu”, “prof.asc”);
 FM_1D(“prof.mif”, data,14,14,-F, F);
 }

GAMMA GARP 127
Pulses & Pulse Cycles GARP Parameters 7.10

to ex-
uthors
lse an-
ula-

ARP-
ild a
 the
ractive

wn on
 users
 in the

 with
7.11.5 GARP-1 Modified Decoupling Profile

Suppose that we wish to follow along with the original GARP publication and reproduce all of the
decoupling profiles simulated therein. How would we go about doing so? GAMMA builds up pulse
cycles from a combination of a pulse waveform and a cycle overlay. For GARP-1 there is a func-
tion supplied in this module (PulGarp) which simply returns a pulse cycle based on the 25-step
GARP waveform and the 4-step RRRR cycle. For decoupling sequences which are not available
through an existing GAMMA function the user can simply build his/her own.

Let’s consider the “90%” GARP-1 simulation in the paper (Fig. 1c top). This was performed
amine how well GARP-1 performs when the pulses are inadvertently mis-calibrated. The a
intentionally set the decoupler field strength to be 90% of what is required for the proper pu
gles in the GARP sequence. To accomplish this in GAMMA we will modify the previous sim
tion by explicitly building our own (bad) GARP-1 pulse cycle. Rather that use the provided G
1 function, we will just scale the provided GARP waveform rf-field strength by 90% then bu
modified GARP-1 pulse cycle with the scaled waveform. Everything else will be very much
same, i.e the same input values and the same input file. For convenience we will add an inte
request for the scaling factor (which will be set to 0.90 to reproduce the paper simulation).

First the simulation output.

GARP-1 90% RF-Power Decoupling Profile

Figure 7-7 GARP-1 decoupling profile @ 90% RF power. Decoupling was performed on the carbon

channel in a 13C-1H two spin system. The decoupling rf-field strength was set to 2 kHz x 0.90 after
calibrating the pulse lengths for 2 kHz. The scalar coupling to 221 Hz. A linebroadening of 1.5 Hz
was used in processing the spectra. The block size was 1K and the offset increment set to 200 Hz.

Again this is in excellent agreement with the GARP-1 paper. The simulation program is sho
the following page. I have placed the important code changes in blue so that it is evident how
can construct their own pulse cycles. I don’t know what the other decoupling sequences are
paper cited, so I won’t bother looking at them. You can if you like though. I ran the program
the command “a.out GARPprof.sys 25 1024 1.5 25 200 0.9” where a.out is the executable.

-4000 -2000 0 2000 4000
Scott Smith March 13, 1998

GAMMA GARP 128
GARP Parameters 7.10

March 13, 1998

 // Get # offsets
ts? “, NO);

 // Get offset increment
ffset);

 // Get rf scaling factor
, gBsf);

t Through All Offsets

// Set apodization rate
// Set detection operator to F-

 // Set density mx equilibrium
, 90.); // This is 90 detection pulse

// Block for acquisiton

ver Full Profile

lex0); // Block for profile
// Total offset at end
// Block for apodized FID
// GARP 25 step waveform
// Scale pulse waveform

nel());
// WALTZ-4 cycle overlay
// Modified cycle name
// Modified GARP-1 cycle
// Synchronize dwell times
// Set dwell time
// Total FID length

,R,0); // Block for apodization

ulate Profile

// Point index in profile
// Set 1st profile offset
// Loop over offsets

annel());// Reset GARP composite pulse
; // Reset modified GARP-1 cycle

// Acquisition this offset
// Apodized FID this offset
// Spectrum this offset
// Put spectrum in profile
// Move system to next offset
// Adjust profile point index

// Final plot frequency
// Output profile ASCII data
// Plot to screen using Gnuplot
// Plot in FrameMaker MIF
Scott Smith

/* GARPprof2.cc ***
** **
** GAMMA Decoupling Test Program **
** **
** This program uses the class GARP to perform a decoupling profile **
** simulation. A hard ideal pulse will be applied to a simple two **
** spin heteronuclear system. Subsequently, an acquisition will be **
** performed with GARP-1 decoupling applied on one the channel which **
** is not being detected. This process will be repeated over a range **
** of decoupler offsets. The result is a GARP-1 decoupler profile. **
** **
** Author: S.A. Smith **
** Date: 3/9/98 **
** Update: 3/9/98 **
** Version: 3.5.4 **
** Copyright: S. Smith. You can modify this program as you see fit for your **
** use, but you must leave the program intact if distrubuted. **
** **
** */

#include <gamma.h>

main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tGARP Decoupling Profile\n\n”;

// Read In Spin System & GARP Parameters

int qn = 1; // Query index
 spin_system sys; // Declare a spin system
 GARP GP; // GARP parameters
 String filename; // Input filename
 filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 if(sys.spins()!=2 || sys.homonuclear())
 cout << “\n\tWarning! This program has been set up for a two spin heteronuclear ”

<< “ system.\n Results on other systems can be unpredictable........”;
GP.read(filename); // Read in GARP parameters

// Set Acquistion and Profile Parameters

String IsoD = sys.symbol(0); // Detection/pulse channel
 String IsoG = GP.channel(); // Decoupler channel

double SW; // Spectral width
 query_parameter(argc, argv, qn++, // Get desired spectral width
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024; // Block size (must be base 2)
 query_parameter(argc, argv, qn++, // Get block size
 “\n\tBlock Size? “, npts);
 double lwhh = 3.0; // Half-height linewidth
 query_parameter(argc, argv, qn++, // Ask for apodization strength
 “\n\tApodization (Hz)? “, lwhh);
 int NO = 30; // # Of Offsets (on each side)

 query_parameter(argc, argv, qn++,
 “\n\tNumber of Positive Decoupler Offse
 double offset;
 query_parameter(argc, argv, qn++,
 “\n\tDecoupler Offset Per Step (Hz)? “, o
 double gBsf;
 query_parameter(argc, argv, qn++,
 “\n\tPulse field strength scaling factor? “

// Set Up Variables Consisten

double R = (lwhh/2)*HZ2RAD;
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 row_vector data(npts);

// Set Up Variables Global O

row_vector profile((2*NO+1)*npts, comp
 double totaloff = double(NO)*offset;
 row_vector fidap;
 PulWaveform PWF = GP.WF();
 PWF.scalegB1(gBsf);

PulComposite Pcmp(PWF, sys, GP.chan
 row_vector cyc = CYC_WALTZ4();
 String cycname = “GARP-1 scaled”;
 PulCycle PCyc(Pcmp, cyc, cycname);

SW = PCyc.FIDsync(SW);
 double td = 1/SW;
 double tt = (npts-1)*td;
 row_vector exp=XExponential(npts,tt,0.0

// Loop Over Offsets, Calc

int K =0;
 sys.offsetShifts(-NO*offset, IsoG);
 for(int ov=-NO; ov<=NO; ov++)
 {

Pcmp = PulComposite(PWF, sys, GP.ch
 PCyc = PulCycle(Pcmp, cyc, cycname)
 data = PCyc.FID(npts,td,Det,sigmap);
 fidap = product(data,exp);
 data = FFT(fidap);
 profile.put_block(0, K, data);
 sys.offsetShifts(offset, IsoG);
 K += npts;
 }

double F = totaloff + SW/2;
 GP_1D(“prof.asc”, profile, 0, -F, F);
 GP_1Dplot(“prof.gnu”, “prof.asc”);
 FM_1D(“prof.mif”, profile ,14,14,-F, F);
 }

GAMMA GARP 129
Pulses & Pulse Cycles GARP Parameters 7.10

pin
oving
rs for

ical
t de-

at

to the
t of the
ations

d “L”
. Then
spin
ets
upled

 in a
x-
more
7.11.6 GARP Decoupling With Relaxation

Now lets do something a bit more exotic with GAMMA and GARP. Here we will add in the effects
of relaxation while the decoupler is on. Since we already have a program that simulates GARP-1
decoupled spectra (GARPdec1.cc) without relaxation, we need only make the proper modifications
to that program and its input in order to obtain the simulation we want.

Lets review a few of basic changes we’ll need. First, rather than working with an isotropic s
system (spin_system) in our program, we need to work with a oriented spin system that is m
isotropically. That is, a spin system that keeps track of dipolar, CSA, and quadrupolar tenso
all spins or spin-pairs. Thus we need to replace spin_system with sys_dynamic. Second, when the
system is read in from an external ASCII file it will look for tensor quantities as well as dynam
values (correlation times). Next we will have to create a relaxation matrix and Liouvillian tha
fines how the system evolves. And lastly, we’ll have to use an FID function that includes th
evolves under the defined Liouvillian so that relaxation (and exchange) are accounted for.

Now that all might sound rather complicated, but it actually requires only minor adjustments
program we already have at our disposal. Have a look. The code on the left was clipped ou
program GARPdec0.cc covered earlier in this chapter and the code on the right the modific
we need to include relaxation effects. I’ve left out some of the comments.

Now that wasn’t so bad was it? We generate a dipole-dipole relaxation superoperator, calle
in the above code, and include it in the function calls which generate the GARP pulse cycle
we call an FID function which will include relaxation effects. Keep in mind that L resides in
Liouville space and is typically big. Running decoupling on 5 spins will take a while and it g
worse the larger the spin system. It is a “Redfield” relaxation superoperator dealing with co
relaxation effects (and not just longitudinal relaxation either...).

Now on to our program. The following page contains the modifications shown. I do build “L”
different fashion than indicated above so that I can include multiple relaxation effects and e
change if I desire, rather than just setting it to only dipolar relaxation. This will become a little
clear when you look at the simulation output versus the input ASCII parameter file........

.

.

.
spin_system sys; // Isotropic spin system
.
.
.
gen_op H = Ho(sys); // Isotropic Hamiltonian
.
.
.
PulCycle PCyc = GP.CycGARP1(sys);
.
.
.
row_vector data = PCyc.FID(npts,td,Det,sigmap);
.
.
.

.

.

.
sys_dynamic sys; // New system type
.
.
.
gen_op H = Ho(sys); // Isotropic Hamiltonian
super_op L = RDD(sys,H); // Dipolar relaxation.
.
.
PulCycle PCyc = GP.CycGARP1(sys, L);
.
.
.
row_vector data = PCyc.FIDR(npts,td,Det,sigmap);
.
.
.

Scott Smith March 13, 1998

GAMMA GARP 130
Pulses & Pulse Cycles GARP Parameters 7.10
7.12 Chapter Source Codes

GarpWF0.cc
/* GarpWF0.cc *** **
** **
** GAMMA GARP Simulation Example Program **
** **
** This program examines the basic GARP sequence Waveform. I does no **
** NMR computations involving GARP, it merely spits out plots so that **
** the default GARP (GARP-1) sequence can be readily viewed. **
** **
** Assuming a.out is the executable of this program, then the following **
** command will generate a single 25 step GARP-1 waveform which will **
** be displayed on screen if Gnuplot is available. It will also make **
** an editable FrameMaker MIF file of the waveform. **
** **
** a.out **
** **
** Author: S.A. Smith **
** Date: 2/27/98 **
** Copyright: S.A. Smith, February 1998 **
** **
** **/

#include <gamma.h> // Include GAMMA

main(int argc, char* argv[])
 {
 cout << “\n\n\t\t\tGAMMA GARP Waveform Program 0\n”;
 GARP GP(500.0, “1H”); // Set GARP parameters
 PulWaveform PWF = GP.WF_GARP1(); // Construct waveform
 PWF.GP(1, 1, 5); // Plot waveform(s), gnuplot
 PWF.FM(1, 1, 5); // Plot waveform(s), Framemaker
 cout << “\n\n”; // Keep screen nice
 }
Scott Smith March 13, 1998

	7 GARP
	7.1 Overview
	7.2 Chapter Contents
	7.2.1 GARP Section Listing
	7.2.2 GARP Function Listing

	GARP-1 Functions
	Access Functions
	GARP-1 Functions
	Input/Output Functions
	7.2.3 GARP Figures & Tables Listing
	7.2.4 GARP Examples
	7.2.5 GARP Programs

	7.3 Constructors and Assignment
	7.3.1 GARP
	Usage:
	Description:
	1. PulGARP() - Creates an “empty” NULL GARP parameter. Can be later filled by an assignment.
	2. PulGARP(double gB1, const& ch, double ph, double off) - Sets up GARP for having an rf-field st...
	3. PulGARP(const PulGARP &PWF1) - Called with another PulGARP quantity this function constructs a...

	Return Value:
	Examples:
	See Also: =
	7.3.2 =

	Usage:
	Description:
	Return Value:
	Example:
	See Also: PulGARP

	7.4 Access Functions
	7.4.1 channel
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.4.2 strength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.4.3 phase

	Usage:
	Description:
	Return Value:
	Example:
	7.4.4 offset

	Usage:
	Description:
	Return Value:
	Example:

	7.5 GARP-1 Functions
	7.5.1 WF
	7.5.2 WF_GARP1
	Usage:
	Description:
	Return Value:
	Example:
	See Also: PCmp, CycGARP1
	7.5.3 PCmp
	7.5.4 PCmpGARP1

	Usage:
	Description:
	Return Value:
	Example:
	See Also: WF, CycGARP1
	7.5.5 CycGARP1

	Usage:
	Description:
	Return Value:
	Example:
	See Also: WF, PCmp

	7.6 Propagator Functions
	7.6.1 GetU
	Usage:
	Description:
	Return Value:
	Example:
	See Also:

	7.7 Input/Output Functions
	7.7.1 printBase
	Usage:
	Description:
	Return Value:
	Example:
	See Also: print, <<
	7.7.2 print

	Usage:
	Description:
	Return Value:
	Example:
	See Also: printBase, <<
	7.7.3 <<

	Usage:
	Description:
	Return Value:
	Example:
	See Also: print, printBase

	7.8 Auxiliary Functions
	7.8.1 channel
	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.2 steps

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.3 cycles

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.4 name

	Usage:
	Description:
	Return Value:
	Example:
	7.8.5 values

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.6 value

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.7 phase

	Usage:
	Description:
	Return Value:
	7.8.8 strength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.9 length

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.10 steplength

	Usage:
	Description:
	Return Value:
	Example:
	7.8.11 cyclelength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.12 scyclelength

	Usage:
	Description:
	Return Value:
	Example:
	See Also:
	7.8.13 FZ

	Usage:
	Description:
	Return Value:
	Example:
	See Also:

	7.9 Description
	7.9.1 Introduction
	7.9.2 GARP Parameters
	7.9.3 Basic GARP Waveform
	Basic GARP 25 Step Sequence
	1
	30.5
	9
	134.5
	17
	258.4
	2
	55.2
	10
	256.1
	18
	64.9
	3
	257.8
	11
	66.4
	19
	70.9
	4
	268.3
	12
	45.9
	20
	77.2
	5
	69.3
	13
	25.5
	21
	98.2
	6
	62.2
	14
	72.7
	22
	133.6
	7
	85.0
	15
	119.5
	23
	255.9
	8
	91.8
	16
	138.2
	24
	65.6
	25
	53.4
	Figure 7-1 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with a...
	7.9.4 GARP-1 Pulse Cycle

	GARP-1 Decoupling Sequence
	Figure 7-1 The GARP-1 decoupling sequence. Each 25-step GARP waveform is repeated with the 4-step...
	7.10 GARP Parameters
	Table 2: Spin System Parameters

	GARPgamB1
	Hz
	GARPiso
	none
	GARPphi
	degrees
	GARPstps
	none
	Channel: GARPiso
	Channel: GARPphi
	Pulse Length: GARPtp
	Pulse Strength: GARPgamB1
	Sync Frequency: GARPF
	Delay Length: GARPtp

	7.11 GARP Examples
	7.11.1 Reading GARP Parameters
	Reading GARP Parameters
	Figure 7-2 The basic 25-step GARP waveform. The blue steps indicate pulse that are applied with a...
	7.11.2 GARP-1 Decoupling
	a.out GARPdec.sys 1H 500 1024 .5

	13C Decoupled Spectrum Using GARP-1
	Figure 7-3 The spectrum produced using the program GARPdec0.cc with input parameter file GARPdec....

	13C Coupled Spectrum, Zero Strength GARP-1
	Figure 7-4 Same as previous figure but with no decoupler field strength.
	7.11.3 GARP-1 Decoupling vs. Field

	13C GARP-1 Decoupling Versus RF-Field Strength
	Figure 7-5 Proton spectra produced using the program GARPdec1.cc with input parameter file GARPde...
	a.out GARPdec.sys GARPdecBs 1H 500 1024 1.0
	7.11.4 GARP-1 Decoupling Profile

	GARP-1 Decoupling Profile
	Figure 7-6 GARP-1 decoupling profile. Decoupling was performed on the carbon channel in a 13C- 1H...
	7.11.5 GARP-1 Modified Decoupling Profile

	GARP-1 90% RF-Power Decoupling Profile
	Figure 7-7 GARP-1 decoupling profile @ 90% RF power. Decoupling was performed on the carbon chann...
	7.11.6 GARP Decoupling With Relaxation

	7.12 Chapter Source Codes
	GarpWF0.cc

